Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.020
Filtrar
1.
Sci Rep ; 14(1): 6371, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493232

RESUMO

Marine sponges host diverse microbial communities. Although we know many of its ecological patterns, a deeper understanding of the polar sponge holobiont is still needed. We combine high-throughput sequencing of ribosomal genes, including the largest taxonomic repertoire of Antarctic sponge species analyzed to date, functional metagenomics, and metagenome-assembled genomes (MAGs). Our findings show that sponges harbor more exclusive bacterial and archaeal communities than seawater, while microbial eukaryotes are mostly shared. Furthermore, bacteria in Antarctic sponge holobionts establish more cooperative interactions than in sponge holobionts from other environments. The bacterial classes that established more positive relations were Bacteroidia, Gamma- and Alphaproteobacteria. Antarctic sponge microbiomes contain microbial guilds that encompass ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and sulfur-oxidizing bacteria. The retrieved MAGs showed a high level of novelty and streamlining signals and belong to the most abundant members of the main microbial guilds in the Antarctic sponge holobiont. Moreover, the genomes of these symbiotic bacteria contain highly abundant functions related to their adaptation to the cold environment, vitamin production, and symbiotic lifestyle, helping the holobiont survive in this extreme environment.


Assuntos
Microbiota , Poríferos , Animais , Poríferos/microbiologia , Regiões Antárticas , Amônia , Archaea/genética , Bactérias/genética , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética
2.
Front Neural Circuits ; 17: 1250694, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841893

RESUMO

Interkingdom signalling within a holobiont allows host and symbionts to communicate and to regulate each other's physiological and developmental states. Here we show that a suite of signalling molecules that function as neurotransmitters and neuromodulators in most animals with nervous systems, specifically dopamine and trace amines, are produced exclusively by the bacterial symbionts of the demosponge Amphimedon queenslandica. Although sponges do not possess a nervous system, A. queenslandica expresses rhodopsin class G-protein-coupled receptors that are structurally similar to dopamine and trace amine receptors. When sponge larvae, which express these receptors, are exposed to agonists and antagonists of bilaterian dopamine and trace amine receptors, we observe marked changes in larval phototactic swimming behaviour, consistent with the sponge being competent to recognise and respond to symbiont-derived trace amine signals. These results indicate that monoamines synthesised by bacterial symbionts may be able to influence the physiology of the host sponge.


Assuntos
Dopamina , Poríferos , Animais , Poríferos/microbiologia , Aminas , Neurotransmissores , Comunicação
3.
Chem Biodivers ; 20(11): e202301425, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37755366

RESUMO

From marine sponge-associated fungus Hamigera avellanea, thirteen secondary metabolites including a pair of undescribed alkaloid enantiomers (+)-hamiavemin A (4S) (+)-1 and (-)-hamiavemin A (4R) (-)-1. Compound 1 was enantiomers resolved by the Chiralpak AS-3 column, using a hexane/isopropanol mobile phase. Their structures were determined based on extensive analyses of HR-ESI-MS, 1D and 2D NMR spectra. The absolute configuration of (+)-1 and (-)-1 were assigned tentatively by ECD calculations. Among the isolates, compound 6 showed strongest antibacterial activity against Enterococcus faecalis, Staphylococcus aureus, Bacillus cereus, Escherichia coli, Salmonella enterica, and Candida albicans with the MIC values of 2, 2, 16, 32, 64, and 16 µg/mL, respectively, which were stronger than that of the positive control compound, kanamycin (MIC values ranging from 4 to 128 µg/mL). In addition, compounds 1, 2, and 9 showed moderate cytotoxic activity against three cancer cell lines, HepG2, A549, and MCF-7 with the IC50 values ranging from 55.35±1.70 to 83.02±2.85 µg/mL.


Assuntos
Alcaloides , Anti-Infecciosos , Antineoplásicos , Poríferos , Animais , Anti-Infecciosos/química , Poríferos/microbiologia , Antibacterianos/química , Fungos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Alcaloides/farmacologia , Testes de Sensibilidade Microbiana
4.
ISME J ; 17(11): 1808-1818, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37587369

RESUMO

Members of the candidate phylum Dadabacteria, recently reassigned to the phylum Candidatus Desulfobacterota, are cosmopolitan in the marine environment found both free-living and associated with hosts that are mainly marine sponges. Yet, these microorganisms are poorly characterized, with no cultured representatives and an ambiguous phylogenetic position in the tree of life. Here, we performed genome-centric metagenomics to elucidate their phylogenomic placement and predict the metabolism of the sponge-associated members of this lineage. Rank-based phylogenomics revealed several new species and a novel family (Candidatus Spongomicrobiaceae) within a sponge-specific order, named here Candidatus Nemesobacterales. Metabolic reconstruction suggests that Ca. Nemesobacterales are aerobic heterotrophs, capable of synthesizing most amino acids, vitamins and cofactors and degrading complex carbohydrates. We also report functional divergence between sponge- and seawater-associated metagenome-assembled genomes. Niche-specific adaptations to the sponge holobiont were evident from significantly enriched genes involved in defense mechanisms against foreign DNA and environmental stressors, host-symbiont interactions and secondary metabolite production. Fluorescence in situ hybridization gave a first glimpse of the morphology and lifestyle of a member of Ca. Desulfobacterota. Candidatus Nemesobacterales spp. were found both inside sponge cells centred around sponge nuclei and in the mesohyl of the sponge Geodia barretti. This study sheds light on the enigmatic group Ca. Nemesobacterales and their functional characteristics that reflect a symbiotic lifestyle.


Assuntos
Poríferos , Animais , Poríferos/microbiologia , Filogenia , Hibridização in Situ Fluorescente , Bactérias/genética , Metagenoma
5.
FEMS Microbiol Lett ; 3702023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37401172

RESUMO

Despite the important roles that marine sponges play in ecosystem functioning and structuring, little is known about how the sponge holobiont responds to local anthropogenic impacts. Here we assess the influence of an impacted environment (Praia Preta) on the microbial community associated with the endemic sponge Aplysina caissara in comparison to a less-impacted area (Praia do Guaecá) from the coast of São Paulo state (Brazil, southwestern Atlantic coast). We hypothesized that the local anthropogenic impacts will change the microbiome of A. caissara and that the community assembly will be driven by a different process (i.e. deterministic versus stochastic) under distinct levels of impact. The microbiome at the amplicon sequence variants level was found to be statistically distinct between sponges from the different sites, and this was also seen for the microbial communities of the surrounding seawater and sediments. Microbial communities of A. caissara from both sites were found to be assembled by deterministic processes, even though the sites presented distinct anthropogenic impacts, showing a pivotal role of the sponge host in selecting its own microbiome. Overall, this study revealed that local anthropogenic impacts altered the microbiome of A. caissara; however, assembly processes are largely determined by the sponge host.


Assuntos
Efeitos Antropogênicos , Biodiversidade , Microbiota , Poríferos , Animais , Brasil , Microbiota/genética , Filogenia , Poríferos/microbiologia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Sedimentos Geológicos/microbiologia , Interações entre Hospedeiro e Microrganismos , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética
6.
Chem Biodivers ; 20(8): e202300950, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37477082

RESUMO

Two new pairs of enantiomeric butenolides, (+)- and (-)-suberiteslide A, (+)- and (-)-subertieslide B had been obtained from the marine sponge Suberties sp. The structures with absolute configurations of these compounds were unequivocally determined by spectroscopic analyses and ECD (Electronic Circular Dichroism) method. It was the first separation of butenolides from the marine sponges of genus Suberites. Additionally, the anti-inflammatory, antibacterial and cytotoxic activities of these compounds were evaluated. The result indicated that only (-)-subertieslide B showed weak anti-inflammatory activity with the IC50 value of 40.8 µM.


Assuntos
Poríferos , Animais , Poríferos/microbiologia , 4-Butirolactona/química , Antibacterianos/farmacologia , Dicroísmo Circular , Estrutura Molecular
7.
Mar Drugs ; 21(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37367669

RESUMO

Five undescribed pentaketide derivatives, (R)-6,8-dihydroxy-4,5-dimethyl-3-methylidene-3,4-dihydro-1H-2-benzopyran-1-one (1), [(3S,4R)-3,8-dihydroxy-6-methoxy-4,5-dimethyl-1-oxo-3,4-dihydro-1H-isochromen-3-yl]methyl acetate (2), (R)-5, 7-dimethoxy-3-((S)-(1-hydroxyethyl)-3,4-dimethylisobenzofuran-1(3H)-one (4b), (S)-7-hydroxy-3-((S)-1-hydroxyethyl)-5-methoxy-3,4-dimethylisobenzofuran 1(3H)-one (5), and a p-hydroxyphenyl-2-pyridone derivative, avellaneanone (6), were isolated together with the previously reported (R)-3-acetyl-7-hydroxy-5-methoxy-3,4-dimethylisobenzofuran-1(3H)-one (3), (R)-7-hydroxy-3-((S)-1-hydroxyethyl)-5-methoxy-3,4-dimethylisobenzofuran-1(3H)-one (4a) and isosclerone (7), from the ethyl acetate extract of a culture of a marine sponge-derived fungus, Hamigera avellanea KUFA0732. The structures of the undescribed compounds were elucidated using 1D and 2D NMR, as well as high-resolution mass spectral analyses. The absolute configurations of the stereogenic carbons in 1, 4b, 5, and 6 were established by X-ray crystallographic analysis. The absolute configurations of C-3 and C-4 in 2 were determined by ROESY correlations and on the basis of their common biosynthetic origin with 1. The crude fungal extract and the isolated compounds 1, 3, 4b, 5, 6, and 7 were assayed for their growth inhibitory activity against various plant pathogenic fungi viz. Alternaria brassicicola, Bipolaris oryzae, Colletotrichum capsici, C. gloeosporiodes, Curvularia oryzae, Fusarium semitectum, Lasiodiplodia theobromae, Phytophthora palmivora, Pyricularia oryzae, Rhizoctonia oryzae and Sclerotium rolfsii.


Assuntos
Poríferos , Animais , Poríferos/microbiologia , Cumarínicos , Estrutura Molecular
8.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37166955

RESUMO

The deep sea is known to host novel bacteria with the potential to produce a diverse array of undiscovered natural products. Thus, understanding these bacteria is of broad interest in ecology and could also underpin applied drug discovery, specifically in the area of antimicrobials. Here, we isolate a new strain of Streptomyces from the tissue of the deep-sea sponge Polymastia corticata collected at a depth of 1869 m from the Gramberg Seamount in the Atlantic Ocean. This strain, which was given the initial designation A15ISP2-DRY2T, has a genome size of 9.29 Mb with a G+C content of 70.83 mol%. Phylogenomics determined that A15ISP2-DRY2T represents a novel species within the genus Streptomyces as part of the Streptomyces aurantiacus clade. The biosynthetic potential of A15ISP2-DRY2T was assessed relative to other members of the S. aurantiacus clade via comparative gene cluster family (GCF) analysis. This revealed a clear congruent relationship between phylogeny and GCF content. A15ISP2-DRY2T contains six unique GCFs absent elsewhere in the clade. Culture-based assays were used to demonstrate the antibacterial activity of A15ISP2-DRY2T against two drug-resistant human pathogens. Thus, we determine A15ISP2-DRY2T to be a novel bacterial species with considerable biosynthetic potential and propose the systematic name 'Streptomyces ortus' sp. nov.


Assuntos
Poríferos , Streptomyces , Streptomyces/química , Streptomyces/classificação , Streptomyces/isolamento & purificação , Água do Mar/microbiologia , Microbiologia da Água , Poríferos/microbiologia , Animais , Composição de Bases , Genoma Bacteriano
9.
ISME J ; 17(8): 1208-1223, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37188915

RESUMO

Marine sponges are critical components of marine benthic fauna assemblages, where their filter-feeding and reef-building capabilities provide bentho-pelagic coupling and crucial habitat. As potentially the oldest representation of a metazoan-microbe symbiosis, they also harbor dense, diverse, and species-specific communities of microbes, which are increasingly recognized for their contributions to dissolved organic matter (DOM) processing. Recent omics-based studies of marine sponge microbiomes have proposed numerous pathways of dissolved metabolite exchange between the host and symbionts within the context of the surrounding environment, but few studies have sought to experimentally interrogate these pathways. By using a combination of metaproteogenomics and laboratory incubations coupled with isotope-based functional assays, we showed that the dominant gammaproteobacterial symbiont, 'Candidatus Taurinisymbion ianthellae', residing in the marine sponge, Ianthella basta, expresses a pathway for the import and dissimilation of taurine, a ubiquitously occurring sulfonate metabolite in marine sponges. 'Candidatus Taurinisymbion ianthellae' incorporates taurine-derived carbon and nitrogen while, at the same time, oxidizing the dissimilated sulfite into sulfate for export. Furthermore, we found that taurine-derived ammonia is exported by the symbiont for immediate oxidation by the dominant ammonia-oxidizing thaumarchaeal symbiont, 'Candidatus Nitrosospongia ianthellae'. Metaproteogenomic analyses also suggest that 'Candidatus Taurinisymbion ianthellae' imports DMSP and possesses both pathways for DMSP demethylation and cleavage, enabling it to use this compound as a carbon and sulfur source for biomass, as well as for energy conservation. These results highlight the important role of biogenic sulfur compounds in the interplay between Ianthella basta and its microbial symbionts.


Assuntos
Poríferos , Animais , Poríferos/microbiologia , Taurina , Amônia , Carbono , Simbiose , Filogenia
10.
Artigo em Inglês | MEDLINE | ID: mdl-37185109

RESUMO

A novel bacterial strain, designated as WHS-Z9T, was isolated from marine sponge Hymeniacidon sp. collected from Weihai (37° 25' N, 121° 58' E), Shandong Province, PR China. Cells of strain WHS-Z9T were Gram-stain-positive, non-spore-forming, non-motile, short-rod-shaped and light yellow-pigmented. The strain could grow at 10-40 °C (optimum, 20 °C), pH 4.5-9.5 (optimum, pH 8.5) and 2-14 % (w/v) NaCl (optimum, 4 %). The 16S rRNA gene sequence of strain WHS-Z9T showed 98.7  % similarity to that of Brevibacterium epidermidis NBRC 14811T, 98.5  % to Brevibacterium sediminis FXJ8.269T and 98.4 % to Brevibacterium oceani BBH7T. The phylogenetic tree based on 16S rRNA gene sequences revealed that strain WHS-Z9T was clustered with Brevibacterium limosum o2T. The whole genome of WHS-Z9T was approximately 4 217 721 bp in size with a G+C content of 65.2  %. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values among WHS-Z9T and other Brevibacterium type strains were 83.3-85.5 % (ANI based on blast), 86.4-87.9  % (ANI based on MUMmer) and 41.9-57.5 % (dDDH). Percentage of conserved protein values between the genomes of strain WHS-Z9T and members of genera Brevibacterium were 76.8-82.9 %, while the average amino acid identity (AAI) values were 83.7-87.0  %. The dDDH, ANI, AAI and POCP values were below the standard cut-off criteria for the delineation of bacterial species. The sole respiratory quinone in strain WHS-Z9T was MK-8(H2), and the predominant fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0. The major polar lipids of WHS-Z9T consisted of diphosphatidylglycerol and glycolipid. The diagnostic cell-wall diamino acid of strain WHS-Z9T was meso-diaminopimelic acid. Based on the data obtained in this study, strain WHS-Z9T (=MCCC 1K07845T=KCTC 49848T) should be classified as the type strain of a novel species of the genus Brevibacterium, for which the name Brevibacterium spongiae sp. nov. is proposed.


Assuntos
Brevibacterium , Poríferos , Animais , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Poríferos/microbiologia , Fosfolipídeos/química
11.
Chembiochem ; 24(12): e202300190, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37092875

RESUMO

Commensal bacteria associated with marine invertebrates are underappreciated sources of chemically novel natural products. Using mass spectrometry, we had previously detected the presence of peptidic natural products in obligate marine bacteria of the genus Microbulbifer cultured from marine sponges. In this report, the isolation and structural characterization of a panel of ureidohexapeptide natural products, termed the bulbiferamides, from Microbulbifer strains is reported wherein the tryptophan side chain indole participates in a macrocyclizing peptide bond formation. Genome sequencing identifies biosynthetic gene clusters encoding production of the bulbiferamides and implicates the involvement of a thioesterase in the indolic macrocycle formation. The structural diversity and widespread presence of bulbiferamides in commensal microbiomes of marine invertebrates point toward a possible ecological role for these natural products.


Assuntos
Produtos Biológicos , Poríferos , Animais , Produtos Biológicos/química , Bactérias/genética , Poríferos/microbiologia , Organismos Aquáticos , Acilação , Indóis
12.
Artigo em Inglês | MEDLINE | ID: mdl-36961875

RESUMO

A novel bacterial strain, designated as PHS-Z21T, was isolated from the marine sponge Cinachyrella kuekenthali collected from PG Dave's Rock, Philippines. Cells of PHS-Z21T are Gram-stain-negative, non-motile, pale-yellow-pigmented, short rods. PHS-Z21T is able to grow at 10-40 ℃ (optimum, 30 ℃), pH 5.5-9.0 (optimum, pH 8.5) and with 3-9 % (w/v) NaCl (optimum, 4 %). Its 16S rRNA gene sequence shows 98.6 % similarity to Qipengyuania nanhaisediminis CGMCC 1.7715T, 98.5 % similarity to Qipengyuania vulgaris 022-2-10T and 98.4 % similarity to Qipengyuania flava SW-46T, respectively. The phylogenetic tree based on 16S rRNA gene sequences reveals that PHS-Z21T is clustered with Q. flava SW-46T. The total genome of PHS-Z21T is approximately 2 932 896 bp in size with a DNA G+C content of 64.7 %. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values among PHS-Z21T and other type strains are 70.0-77.3 % (ANIb), 83.3-86.8 % (ANIm) and 13.0-26.9 % (dDDH), respectively. The dDDH and ANI values are below the standard cutoff criteria for delineating bacterial species. Percentage of conserved proteins (POCP) values between the genome of strain PHS-Z21T and those of members of the genera Qipengyuania, Erythrobacter, Altererythrobacter and Alteriqipengyuania were 62.0-74.5 %, 55.8-63.2 %, 60.7-66.9 % and 63.9-66.8%, respectively, while the AAI values were 68.4-74.3 %, 63.8-65.9 %, 66.3-68.3 % and 64.7-66.9%, respectively. The major fatty acids of PHS-Z21T are composed of summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C18 : 1ω7c 11-methyl, C16 : 0 and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The polar lipids of PHS-Z21T mainly consist of diphosphatidylglycerol, glycolipid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and glycophospholipid. The respiratory lipoquinone was identified as Q-10. On the basis of the phenotypic and phylogenetic data, strain PHS-Z21T represents a novel species of the genus Qipengyuania, for which the name Qipengyuania spongiae sp. nov. is proposed. The type strain is PHS-Z21T (=MCCC 1K07849T=KCTC 92590T).


Assuntos
Alphaproteobacteria , Poríferos , Animais , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Ubiquinona/química , Composição de Bases , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA , Poríferos/microbiologia
13.
Microbiome ; 11(1): 49, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899421

RESUMO

BACKGROUND: Methanotrophy by the sponge-hosted microbiome has been mainly reported in the ecological context of deep-sea hydrocarbon seep niches where methane is either produced geothermically or via anaerobic methanogenic archaea inhabiting the sulfate-depleted sediments. However, methane-oxidizing bacteria from the candidate phylum Binatota have recently been described and shown to be present in oxic shallow-water marine sponges, where sources of methane remain undescribed. RESULTS: Here, using an integrative -omics approach, we provide evidence for sponge-hosted bacterial methane synthesis occurring in fully oxygenated shallow-water habitats. Specifically, we suggest methane generation occurs via at least two independent pathways involving methylamine and methylphosphonate transformations that, concomitantly to aerobic methane production, generate bioavailable nitrogen and phosphate, respectively. Methylphosphonate may be sourced from seawater continuously filtered by the sponge host. Methylamines may also be externally sourced or, alternatively, generated by a multi-step metabolic process where carnitine, derived from sponge cell debris, is transformed to methylamine by different sponge-hosted microbial lineages. Finally, methanotrophs specialized in pigment production, affiliated to the phylum Binatota, may provide a photoprotective function, closing a previously undescribed C1-metabolic loop that involves both the sponge host and specific members of the associated microbial community. CONCLUSION: Given the global distribution of this ancient animal lineage and their remarkable water filtration activity, sponge-hosted methane cycling may affect methane supersaturation in oxic coastal environments. Depending on the net balance between methane production and consumption, sponges may serve as marine sources or sinks of this potent greenhouse gas. Video Abstract.


Assuntos
Microbiota , Poríferos , Animais , Metano/metabolismo , Bactérias/metabolismo , Poríferos/microbiologia , Archaea/genética , Água , Filogenia , Sedimentos Geológicos/microbiologia , RNA Ribossômico 16S/metabolismo
14.
Chem Biodivers ; 20(4): e202300010, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36876631

RESUMO

Aspergetherins A-D (1-4), four new chlorinated biphenyls, were isolated from the rice fermentation of a marine sponge symbiotic fungus Aspergillus terreus 164018, along with seven known biphenyl derivatives (5-11). The structures of four new compounds were determined by a comprehensive analysis of the spectroscopic data, including HR-ESI-MS and 2D NMR data. All 11 isolates were evaluated for their anti-bacterial activity against two strains of methicillin-resistant Staphylococcus aureus (MRSA). Among them, compounds 1, 3, 8 and 10 showed anti-MRSA activity with MIC values of 1.0-128 µg/mL. Preliminary structure-activity relationship analysis unveiled that both chlorinated substitution and esterification of 2-carboxylic acid could impact the antibacterial activity of biphenyls.


Assuntos
Antibacterianos , Aspergillus , Compostos de Bifenilo , Poríferos , Animais , Antibacterianos/química , Aspergillus/química , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Poríferos/microbiologia , Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia
15.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838631

RESUMO

Red Sea marine sponges are an important source of biologically active natural products. Therefore, the present study aimed to investigate, for the first time, the components of n-hexane, dichloromethane, and ethyl acetate fractions of Cliona sp. marine sponge collected from the Red Sea, Egypt using UPLC-ESI-MS/MS (Ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry) analysis. The analysis revealed the tentative identification of 23, 16, and 24 compounds from the n-hexane, dichloromethane, and ethyl acetate fractions of Cliona sp., respectively. In addition, the examination of these fractions resulted in the isolation and identification of three sterols and one amino acid. The identification of the isolated compounds was confirmed by 1D and 2D NMR (Nuclear Magnetic Resonance), and MS (Mass spectrometry), and IR (Infrared) spectroscopy. The in vitro cytotoxic, antioxidant, and antimicrobial activities of the total ethanolic extract and its sub-fractions were also evaluated. Interestingly, the ethyl acetate fraction showed potent cytotoxic activity against colon (HCT-116) and human larynx carcinoma (HEP-2) cell lines with IC50 (Half-maximal Inhibitory Concentration) 6.11 ± 0.2 and 12.6 ± 0.9 µg/mL, respectively. However, the dichloromethane fraction showed strong antioxidant activity, with IC50 75.53 ± 3.41 µg/mL. Notably, the total ethanolic extract showed the strongest antibacterial activity against Staphylococcus aureus and Escherichia coli, with MIC (Minimum Inhibitory Concentration) 62.5 ± 0.82 and 125 ± 0.62 µg/mL, respectively, compared to other fractions. In conclusion, this is the first report on the secondary metabolites content and biological activities of Cliona sp. from the Red Sea, Egypt. It also highlights the need for further research on the most active fractions against various cancer cell lines and resistant bacterial and fungal strains. Cliona sp. extract and its fractions could be a potential source of novel and safe natural drugs with a wide range of medicinal and pharmaceutical applications.


Assuntos
Poríferos , Espectrometria de Massas em Tandem , Animais , Humanos , Oceano Índico , Egito , Cloreto de Metileno , Poríferos/microbiologia , Extratos Vegetais/química , Antioxidantes/química , Etanol
16.
Mar Drugs ; 21(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36662226

RESUMO

Sponges are the richest source of bioactive organic small molecules, referred to as natural products, in the marine environment. It is well established that laboratory culturing-resistant symbiotic bacteria residing within the eukaryotic sponge host matrix often synthesize the natural products that are detected in the sponge tissue extracts. However, the contributions of the culturing-amenable commensal bacteria that are also associated with the sponge host to the overall metabolome of the sponge holobiont are not well defined. In this study, we cultured a large library of bacteria from three marine sponges commonly found in the Florida Keys. Metabolomes of isolated bacterial strains and that of the sponge holobiont were compared using mass spectrometry to reveal minimal metabolomic overlap between commensal bacteria and the sponge hosts. We also find that the phylogenetic overlap between cultured commensal bacteria and that of the sponge microbiome is minimal. Despite these observations, the commensal bacteria were found to be a rich resource for novel natural product discovery. Mass spectrometry-based metabolomics provided structural insights into these cryptic natural products. Pedagogic innovation in the form of laboratory curricula development is described which provided undergraduate students with hands-on instruction in microbiology and natural product discovery using metabolomic data mining strategies.


Assuntos
Produtos Biológicos , Poríferos , Animais , Humanos , Filogenia , Georgia , Poríferos/microbiologia , Bactérias , Metabolômica , Estudantes , Produtos Biológicos/química
17.
Can J Microbiol ; 69(1): 1-16, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288610

RESUMO

Antimicrobial resistance (AMR) is one of the leading global health issues that demand urgent attention. Very soon the world will have to bear the consequences of increased drug resistance if new anti-infectives are not pumped into the clinical pipeline in a short period. This presses on the need for novel chemical entities, and the marine environment is one such hotspot to look for. The Ocean harbours a variety of organisms, of which from this aspect, "Sponges (Phylum Porifera)" are of particular interest. To tackle the stresses faced due to their sessile and filter-feeding lifestyle, sponges produce various bioactive compounds, which can be tapped for human use. The sponges harbour several microorganisms of different types and in most cases; the microbial symbionts are the actual producers of the bioactive compounds. This review describes the alarming need for the development of new antimicrobials and how marine sponges can contribute to this. Selected antimicrobial compounds from the marine sponges and their associated bacteria have been described. Additionally, measures to tackle the supply problem have been covered, which is the primary obstacle in marine natural product drug discovery.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Poríferos , Animais , Humanos , Poríferos/química , Poríferos/microbiologia , Anti-Infecciosos/farmacologia , Bactérias , Produtos Biológicos/farmacologia
18.
Environ Microbiol ; 25(3): 646-660, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36480164

RESUMO

Many marine sponges host highly diverse microbiomes that contribute to various aspects of host health. Although the putative function of individual groups of sponge symbionts has been increasingly described, the extreme diversity has generally precluded in-depth characterization of entire microbiomes, including identification of syntrophic partnerships. The Indo-Pacific sponge Ianthella basta is emerging as a model organism for symbiosis research, hosting only three dominant symbionts: a Thaumarchaeotum, a Gammaproteobacterium, and an Alphaproteobacterium and a range of other low abundance or transitory taxa. Here, we retrieved metagenome assembled genomes (MAGs) representing >90% of I. basta's microbial community, facilitating the metabolic reconstruction of the sponge's near complete microbiome. Through this analysis, we identified metabolic complementarity between microbes, including vitamin sharing, described the importance of low abundance symbionts, and characterized a novel microbe-host attachment mechanism in the Alphaproteobacterium. We further identified putative viral sequences, highlighting the role viruses can play in maintaining symbioses in I. basta through the horizontal transfer of eukaryotic-like proteins, and complemented this data with metaproteomics to identify active metabolic pathways in bacteria, archaea, and viruses. This data provide the framework to adopt I. basta as a model organism for studying host-microbe interactions and provide a basis for in-depth physiological experiments.


Assuntos
Microbiota , Poríferos , Animais , Poríferos/microbiologia , Filogenia , Archaea/metabolismo , Simbiose/fisiologia
19.
mBio ; 13(6): e0249922, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36314838

RESUMO

Chemists have studied marine animals for the better part of a century because they contain a diverse array of bioactive compounds. Tens of thousands of compounds have been reported, many with elaborate structural motifs and biological mechanisms of action found nowhere else. The challenge holding back the field has long been that of supply. Compounds are sometimes obtained by cultivating marine animals or by wild harvest, but this often presents logistical and environmental challenges. Some of the most medically important marine animal compounds are supplied by synthesis, often through multistep procedures that delay drug development. A relatively small number of such agents have been approved by the U.S. Food and Drug Administration, often after a heroic effort. In a recent mBio paper, Uppal and coworkers (https://doi.org/10.1128/mBio.01524-22) address key hurdles underlying the supply issue, discovering an uncultivated new bacterial genus from a marine sponge and reconstituting the biosynthetic pathway for expression.


Assuntos
Produtos Biológicos , Poríferos , Animais , Poríferos/microbiologia , Bactérias/metabolismo , Desenvolvimento de Medicamentos , Descoberta de Drogas , Produtos Biológicos/metabolismo
20.
Environ Microbiol ; 24(12): 6392-6410, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36250983

RESUMO

Marine sponges are known for their complex and stable microbiomes. However, the lack of a gnotobiotic sponge-model and experimental methods to manipulate both the host and the microbial symbionts currently limit our mechanistic understanding of sponge-microbial symbioses. We have used the North Atlantic sponge species Halichondria panicea to evaluate the use of antibiotics to generate gnotobiotic sponges. We further asked whether the microbiome can be reestablished via recolonization with the natural microbiome. Experiments were performed in marine gnotobiotic facilities equipped with a custom-made, sterile, flow-through aquarium system. Bacterial abundance dynamics were monitored qualitatively and quantitatively by 16 S rRNA gene amplicon sequencing and qPCR, respectively. Antibiotics induced dysbiosis by favouring an increase of opportunistic, antibiotic-resistant bacteria, resulting in more complex, but less specific bacteria-bacteria interactions than in untreated sponges. The abundance of the dominant symbiont, Candidatus Halichondribacter symbioticus, remained overall unchanged, reflecting its obligately symbiotic nature. Recolonization with the natural microbiome could not reverse antibiotic-induced dysbiosis. However, single bacterial taxa that were transferred, successfully recolonized the sponge and affected bacteria-bacteria interactions. By experimentally manipulating microbiome composition, we could show the stability of a sponge-symbiont clade despite microbiome dysbiosis. This study contributes to understanding both host-bacteria and bacteria-bacteria interactions in the sponge holobiont.


Assuntos
Microbiota , Poríferos , Rhodobacteraceae , Animais , Poríferos/microbiologia , Disbiose , Antibacterianos , Microbiota/genética , Simbiose , Rhodobacteraceae/genética , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...